Improve Pedestrian Attribute Classification by Weighted Interactions from Other Attributes
نویسندگان
چکیده
Recent works have shown that visual attributes are useful in a number of applications, such as object classification, recognition, and retrieval. However, predicting attributes in images with large variations still remains a challenging problem. Several approaches have been proposed for visual attribute classification; however, most of them assume independence among attributes. In fact, to predict one attribute, it is often useful to consider other related attributes. For example, a pedestrian with long hair and skirt usually imply the female attribute. Motivated by this, we propose a novel pedestrian attribute classification method which exploits interactions among different attributes. Firstly, each attribute classifier is trained independently. Secondly, for each attribute, we also use the decision scores of other attribute classifiers to learn the attribute interaction regressor. Finally, prediction of one attribute is achieved by a weighted combination of the independent decision score and the interaction score from other attributes. The proposed method is able to keep the balance of the independent decision score and interaction of other attributes to yield more robust classification results. Experimental results on the Attributed Pedestrian in Surveillance (APiS 1.0) [1] database validate the effectiveness of the proposed approach for pedestrian attribute classification.
منابع مشابه
A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملWeakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Localization
State-of-the-art methods treat pedestrian attribute recognition as a multi-label image classification problem. The location information of person attributes is usually eliminated or simply encoded in the rigid splitting of whole body in previous work. In this paper, we formulate the task in a weakly-supervised attribute localization framework. Based on GoogLeNet, firstly, a set of mid-level att...
متن کاملA Richly Annotated Dataset for Pedestrian Attribute Recognition
In this paper, we aim to improve the dataset foundation for pedestrian attribute recognition in real surveillance scenarios. Recognition of human attributes, such as gender, and clothes types, has great prospects in real applications. However, the development of suitable benchmark datasets for attribute recognition remains lagged behind. Existing human attribute datasets are collected from vari...
متن کاملImproving Person Re-identification by Attribute and Identity Learning
Person re-identification (re-ID) and attribute recognition share a common target at the pedestrian description. Their difference consists in the granularity. Attribute recognition focuses on local aspects of a person while person re-ID usually extracts global representations. Considering their similarity and difference, this paper proposes a very simple convolutional neural network (CNN) that l...
متن کاملAttribute Weighting via Differential Evolution Algorithm for Attribute Weighted Naive Bayes (WNB)
The naive Bayes (NB) is a popular classification technique for data mining and machine learning, which is based on the attribute independence assumption. Researchers have proposed out many effective methods to improve the performance of NB by lowering its primary weakness---the assumption that attributes are independent given the class, such as backwards sequential elimination method, lazy elim...
متن کامل